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In this work, we first discuss systematically three general approaches to construct a non-Hermitian flat band,
defined by its dispersionless real part. These approaches resort to, respectively, spontaneous restoration of
non-Hermitian particle-hole symmetry, a persisting flat band from the underlying Hermitian system, and a com-
pact Wannier function that is an eigenstate of the entire system. For the last approach in particular, we show the
simplest lattice structure where it can be applied, and we further identify a special case of such a flat band where
every point in the Brillouin zone is an exceptional point of order 3. A localized excitation in this “EP3 flat band”
can display either a conserved power, quadratic power increase, or even quartic power increase, depending on
whether the localized eigenstate or one of the two generalized eigenvectors is initially excited. Nevertheless, the
asymptotic wave function in the long time limit is always given by the eigenstate, in this case, the compact
Wannier function or its superposition in two or more unit cells. © 2018 Chinese Laser Press
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1. INTRODUCTION

A flat band, as the name suggests, is a dispersionless band that
extends in the whole Brillouin zone. Systems that exhibit flat
bands have attracted considerable interest in the past few years,
including optical [1,2] and photonic lattices [3–6], graphene
[7,8], superconductors [9–12], fractional quantum Hall sys-
tems [13–15], and exciton–polariton condensates [16,17].
The flatness of the band leads to a zero group velocity, which
has important implications on the dynamic and localization
properties, including the inverse Anderson transition [18],
localization with unconventional critical exponents and multi-
fractal behavior [19], mobility edges with algebraic singularities
[20], and unusual scaling behaviors [21–23].

For a Hermitian lattice, a completely flat band in the en-
tire Brillouin zone is formed when there exists a Wannier
function that is an eigenstate of the whole system. To under-
stand this relation, we only need to resort to the definition of
the Wannier function itself, which we denote by W n�x − ja�
in one dimension (1D). Here, n is the band index, a is
the lattice constant, and j is the unit cell index. The Bloch
wave function with wave vector k in the nth band can be
written as

Ψn�x; k� �
X
j

eikajW n�x − ja�; (1)

and it satisfies H 0Ψn�x; k� � ωn�k�Ψn�x; k�, where H 0 is the
Hamiltonian of the entire system instead of the Bloch
Hamiltonian H �k� of the unit cell. Now if H 0W n�x − ja� �
ωwW n�x − ja�, i.e., there exists a Wannier function that is an
eigenstate of the whole system with eigenvalue ωw; then, we
immediately find ωn�k� � ωw, which is k-independent.

The simplest way to find such a Wannier function is in a
frustrated lattice [24], where quantum tunnelings from the
edges of the Wannier function to the neighboring unit cells
interfere destructively and are completely cancelled, hence iso-
lating the Wannier function from the rest of the lattice. Take
the 1D Lieb lattice, for example [see Fig. 1(a)]. It has an
L-shaped unit cell, with decorated lattice sites (A) coupling
to every other site (B) on the main lattice. In the tight-binding
model, it is captured by the Bloch Hamiltonian

H �k� �

2
64
ωA G 0

G ωB J�1� e−ika�
0 J�1� eika� ωC

3
75; (2)

where G; J ∈ R are the vertical and horizontal coupling co-
efficients. When there is no detuning between the A sites and the
C sites on the main lattice (i.e., ωA � ωC ≡ ω0), a V-shaped
Wannier function exists, which spans two unit cells. This
Wannier function has a nonzero amplitude only at the two A

A10 Vol. 6, No. 4 / April 2018 / Photonics Research Research Article

2327-9125/18/040A10-08 Journal © 2018 Chinese Laser Press

mailto:li.ge@csi.cuny.edu
mailto:li.ge@csi.cuny.edu
mailto:li.ge@csi.cuny.edu
mailto:li.ge@csi.cuny.edu
https://doi.org/10.1364/PRJ.6.000A10


lattice sites and the C lattice site between them [see Fig. 1(a)],
i.e., �ψ �A�

j ;ψ �B�
j ;ψ �C�

j ;ψ �A�
j�1;ψ

�B�
j�1;ψ

�C�
j�1� � �−J;0;G;−J;0;0�, and

it is an eigenstate of the entire system with eigenvalue ωw � ω0.
As a result, this Wannier function leads to a flat band at
ωFB � ω0.

Unlike condensed matter systems, the realization of flat bands
in optics involves parallel waveguides or cavities that are coupled
evanescently. As such, a new degree of freedom can be introduced
to manipulate the forming and properties of flat bands in these
systems, i.e., non-Hermiticity brought forth by optical gain and
loss. As we shall see later, this additional tuning knob enables
more flexible control of band structures, with which a completely
different approach can be employed to generate a flat band. Here,
it is worth pointing out that, in a non-Hermitian system, the
band structure is complex-valued in general, and we define a flat
band by requiring that its real part is k-independent. Initial stud-
ies of flat band physics in a non-Hermitian system considered
the effect of parity-time perturbations on a Hermitian flat band
[25–27], where optical gain and loss are arranged in a judicious
way to satisfy the parity-time symmetry [28]. More recently, several
studies probed the existence of non-Hermitian flat bands using either
gain and loss modulations or complex-valued couplings [29–32].

The goal of this paper is to provide a unified view of how
non-Hermitian flat bands, as defined above, can be con-
structed. More specifically, we discuss systematically three such
approaches, namely, using spontaneous restoration of non-
Hermitian particle-hole (NHPH) symmetry (“Approach 1”
[32]), a persisting flat band from the underlying Hermitian sys-
tem (“Approach 2”), and a compact Wannier function that is an
eigenstate of the entire system (“Approach 3” [29–31]). For
Approach 3 in particular, we give the simplest lattice structure
where this approach can be applied, which contains only two
lattice sites in a unit cell. We further identify a special case of
such a flat band where every point in the Brillouin zone is an
exceptional point (EP) of order 3 [25,33], and a localized ex-
citation in this “EP3 flat band” can display either a conserved
power, quadratic power increase, or even quartic power in-
crease, depending on whether the compact Wannier function

or one of the two generalized eigenvectors is initially excited.
Nevertheless, the asymptotic wave function in the long time
limit is always given by an eigenstate, in this case, the compact
Wannier function or its superposition in two or more unit cells.

2. CONSTRUCTING NON-HERMITIAN FLAT
BANDS

A. Approach 1
Approach 1, as mentioned above, was first suggested in
Ref. [32], where the flat band is a result of spontaneously re-
stored NHPH symmetry [34–36] for all modes in the flat band.
NHPH symmetry requires that the Hamiltonian of the system
anticommutes with an antilinear operator, i.e., fH;CK g � 0,
where C is a linear operator and K denotes the complex con-
jugation. This approach (and the NHPH symmetry) does not
require a frustrated lattice, and the band structure in the
Hermitian limit does not have a flat band; instead, it is univer-
sal for a system that consists of two sublattices with real-valued
nearest neighbor coupling and identical ω0 for all lattice sites
before the gain and loss modulation is introduced (i.e., ωj →
ωj� iγj for site j) [36]. NHPH symmetry leads to a symmetric
spectrum satisfying �ωl �k� − ω0� � −�ωm�k� − ω0��, where l ,m
are two band indices, and we have Re�ωl �k�� � ω0 when
l � m, which defines the symmetric phase of NHPH sym-
metry. As a result, a flat band at Re�ωFB� � ω0 is formed.
Note that, because the system does not have a flat band in
its Hermitian limit, the flat band is formed after the non-
Hermitian perturbation collapses the real parts of an even num-
ber of previous dispersive bands [37,38]. Therefore, this flat
band actually contains at least two bands with degenerate real
parts, which are distinguished only by their different imagi-
nary parts.

Here we exemplify a two-dimensional (2D) lattice with a flat
band formed via this approach. We consider a rectangular lat-
tice with identical lattice sites and with lattice constants a,b in
the x and y directions. By introducing loss only to the A sites
marked in Fig. 2(a), the size of the unit cell quadruples and the
Bloch Hamiltonian of this system can be written as

H �k� �

2
66664

iγa J̃�kx� G̃�ky� 0

J̃��kx� 0 0 G̃�ky�
G̃��ky� 0 0 J̃�kx�

0 G̃��ky� J̃��kx� 0

3
77775; (3)

where J̃�kx� ≡ J�1� e−2ikxa�; G̃�ky� ≡ G�1� e−2ikyb� and J , G
are again the nearest neighbor couplings in the x and y direc-
tions. It is easy to see that the system has NHPH symmetry: it
consists of two sublattices formed by (A,D) and (B,C) lattice
sites, respectively, and all lattice sites have the same on-site
energy (ω0 � 0) before the loss modulation is introduced.

The band structure of this rectangular lattice in the
Hermitian limit (γA → 0) is shown in Fig. 2(b). Note that
the two sections between X and M in the first Brillouin zone
are both doubly degenerate because, at kyb � 	π∕2, the two
rows of the unit cell are effectively decoupled [i.e.,
G̃�ky � 	π∕2b� � 0]. All four bands merge into a single
point at the M point, where kxa also becomes 	π∕2 and
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Fig. 1. (a) Band structure of a Hermitian Lieb lattice. The flat band
is shown by the thick line. Inset: schematic of the Lieb lattice, where G
(solid lines) is 3/4 of J (dashed lines). Partially transparent dots show
the spatial profile of the compact Wannier function. (b) Same as
(a) but with gain and loss modulation γA � 1, γB � 0.5,
γC � −0.1. Dashed lines show the imaginary parts of the band struc-
ture, and those of the two dispersive bands are the same (given by the
thin dashed line) due to the relation ωl �k� � −ω�

m�k��l ≠ m� imposed
by NHPH symmetry.
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all couplings effectively disappear [i.e., G̃�ky � 	π∕2b� � J̃
�kx � 	π∕2a� � 0]. This observation at M holds also in
the non-Hermitian case (see Fig. 3).

As jγAj increases, the central two bands start to collapse
[Fig. 2(c)], and the non-Hermitian flat band is completed when
jγAj � 4jGj [Fig. 2(d)]. Note that we have chosen jGj > jJj
here. If jGj < jJj instead, the middle band seems to be flat
when jγAj � 4jGj along the usual path Γ − X −M − Γ in
the first Brillouin zone, but in fact it is not flat yet near the
x 0 point (kx � 0; kyb � 	π∕2) [Fig. 3(a)]. It is straightforward
to show that, in this case, the flat band is completed when
jγAj � 4jJj [Fig. 3(b)].

If we lift the NHPH symmetry of the system, e.g., by intro-
ducing a detuning ΔA � 2J at the A site in each unit cell, then
a strictly flat band no longer exists [Fig. 4(a)]. We do note that a
huge γA in this case effectively decouples all the A sites from the
rest of the lattice, and the latter actually form a Hermitian 2D
Lieb lattice [Fig. 4(c)]. As a result, two approximately flat bands
are formed in this limit [Fig. 4(b)], one with ω ≈ ΔA � iγA

from the isolated A sites and the other with ω ≈ 0 originating
from the Hermitian flat band of the 2D Lieb lattice [Fig. 4(d)]
[4,5]; the latter is similar to its 1D counterpart, as shown in
Fig. 1(a), and the former is a trivial example of Approach 3
where the Wannier function is on a single A site—not because
of frustration but due to loss-induced isolation.

B. Approach 2
Another and a more intuitive approach (“Approach 2”) to con-
struct a non-Hermitian flat band is to start from a Hermitian
system that has a flat band. The aim is then to maintain this
Hermitian flat band (at least its real part) after the introduction
of gain and loss. For the 1D Lieb lattice mentioned in the intro-
duction, if the same γ is added to the non-dark sites (A and C)
of the Wannier function, the flat band trivially persists with
ωFB � ω0 � iγ, whether or not ωB becomes complex. In this
case, the Wannier function is still isolated from the rest of the
lattice, and it is a special case of Approach 3 we will discuss
in detail later.We also mention that the Hermitian flat band stud-
ied in Ref. [25] persists with a parity-time symmetric perturbation
[37,39–45] largely due to this reason. Surprisingly, even when an
arbitrary gain and loss configuration is imposed in the unit cell of
the Lieb lattice shown in Fig. 1(a), the real part of the central
band is still flat if ωB � ω0, with its imaginary part now exhibit-
ing a nontrivial k-dependence [see Fig. 1(b)]. This observation
indicates that there ceases to exist a Wannier function that is
an eigenstate of the whole system, and the mechanism that leads
to the flat band is different from the underlying Hermitian case.

One way to understand this behavior is again by using
NHPH symmetry. This system has NHPH symmetry even
with an arbitrary gain and loss modulation, and the flat band
modes stay in the symmetric phase of the NHPH symmetry
where Re�ω� � ω0. However, this consideration does not tell
us immediately why these modes do not undergo a spontaneous
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Fig. 2. Band structure of a 2D rectangular lattice with loss intro-
duced to the A sites. (a) Schematics of the rectangular lattice and
its reciprocal lattice. The unit cell is highlighted by the rounded
box. G � 1.2J > 0. (b)–(d) Real part of the band structure when
γA∕J � 0; −2; −4.8.
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Fig. 3. Same as Fig. 2 but plotted in three dimensions with
G � 0.8J > 0 and γA∕J � −3.2 in (a) and −4 in (b).
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shown in (c) and (d).
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NHPH symmetry breaking when the gain and loss modulation
is strong, which would lift the flatness of the band.

As it turns out, this persisting flat band can also be under-
stood as the result of (i) a well-known mathematical theorem:
one root of a cubic equation with real coefficients is always real;
and (ii) the underlying Hermitian flat band is at the identical
on-site energy, i.e., ωFB � ω0. To see how these two conditions
enforce a non-Hermitian flat band, we write the eigenvalues of
the periodic system as ω�k� ≡ ω0 � iu�k�, where u�k� is
complex in general. We then find that the equation for u is
a cubic equation u3 � bu2 � cu� d � 0 with only real coef-
ficients b � P

p
γp, c � −G2 − 2�1� cos ka�J2 �P

q>pγpγq,

and d � �G2 − γAγB�γC � 2�1� cos ka�γAJ2, where the
summations run through the three lattice sites in a unit cell.
Therefore, u�k� always has a real root according to (i), which
indicates that ω�k� − ω0 always has an imaginary root, i.e.,
a flat band at Re�ω�k�� � ω0 with system- and k-dependent
Im�ω�k�� � u�k�. It is then clear that this flat band is indepen-
dent of the strength of the gain and loss modulation.

In fact, this property holds for many frustrated lattices with
an odd number (q) of lattice sites in a unit cell but not for those
with an even q, as we exemplify in Figs. 5(b) and 5(d) with
q � 5 and 2. This approach is not limited to 1D and quasi-1D
lattices; it also applies, for example, to the 2D Lieb lattice
shown in Fig. 4(c) with q � 3. Two sets of randomly generated
gain and loss modulations in a unit cell are shown in Fig. 6.

C. Approach 3
The third approach (“Approach 3”) to construct a non-
Hermitian flat band is to construct a localized Wannier

function that is an eigenstate of the whole system. Similar
to the Hermitian case mentioned in the introduction, this ap-
proach can be applied to a frustrated lattice, and the resulting
flat band has a k-independent imaginary part as well. One exam-
ple of this approach was given in Ref. [30] for a triangle lattice,
and two other examples are given in Ref. [31]. The difference in
these two similar studies is that the former considered a lattice
that does not have a flat band without gain or loss, while the latter
used lattices that do have a flat band in the Hermitian limit.
In this sense, the latter is similar to Approach 2 in spirit, with
a non-Hermitian perturbation that still makes the Wannier func-
tion an eigenstate of the whole system.

We should mention that two non-Hermitian flat bands
similar in construction were also found numerically in
Ref. [29], but the authors there did not discuss the origin of
the flatness or the existence of a compact Wannier function
in the non-Hermitian case for either flat band. We point
out here that the Wannier function for these two flat bands
spans one and two unit cells, respectively. More specifically,
the model considered in Ref. [29] can be written as

H �k� �

2
664

−iγ G J�1� e−ika�
G iγ J��1� e−ika�

J�1� eika� J��1� eika� 0

3
775; (4)

and its cross-stitched lattice is shown schematically in Figs. 7(a)
and 7(b). Here, we have shifted the spectrum (such that
ω0 � 0) to simplify the notation. Denoting Arg�J � ≡ θ∕2, a
flat band is formed when γ � −G∕ sin θ or −G sin θ, where
ωFB � 0 and −G cos θ, respectively [see Figs. 7(c) and 7(d)].
The compact Wannier functions in these two cases are shown
in Figs. 7(a) and 7(b), and they are given by �ψ �A�

j ;ψ �B�
j ;ψ �C�

j � �
�−1; eiθ;0� in a single unit cell and by �ψ �A�

j ;ψ �B�
j ;ψ �C�

j ;

ψ �A�
j�1;ψ

�B�
j�1;ψ

�C�
j�1� � �−1; eiθ; iG cos θ∕�J� sin θ�; −1; eiθ; 0� in

two unit cells, respectively.
All the three references mentioned above considered a unit

cell with three lattice sites, which, however, is not the simplest
lattice structure that can have a Wannier function with the
aforementioned property; the simplest one is the saw lattice
shown in Fig. 5(c), now with a complex coupling
G � J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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G (solid lines) � J (dashed lines). Partially transparent dots show the
spatial profile of the compact Wannier function. (b) Same as (a) but
with γA;B;D;E � 0.5; γC � 1. Again the imaginary parts (dashed lines)
of the dispersive bands are identical pairwise due to NHPH symmetry.
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H �k� �
�

iγA G�1� e−ika�
G�1� eika� iγB � 2J cos ka

�
: (5)

Interestingly, the non-Hermitian perturbations γA;B and the re-
sulting G do not change the real part of the band structure at all;
the imaginary parts of the flat band and dispersive band are
both flat and equal to γB and γA, respectively:

ωFB � −2J � iγB; ωD � 2J�1� cos ka� � iγA: (6)

The Wannier function that leads to the non-Hermitian flat
band has the same form as in the Hermitian case, i.e.,
�ψ �A�

j ;ψ �B�
j ;ψ �A�

j�1;ψ
�B�
j�1� � �−1; t ; −1; 0� in two unit cells.

3 PRESENCE OF EPS AND POLYNOMIAL
POWER INCREASE

An EP is a non-Hermitian degenerate point where not only the
eigenvalues but also the wave functions of two or more eigen-
states coalesce [46–54]. EPs are found in both Refs. [30,31],
and the formation of the non-Hermitian flat band is attributed
to these EPs, to some extent [30]. However, from our discus-
sion of Approach 3 and especially the example given by Eq. (5),
it is clear that this approach does not rely on the existence of
an EP.

When all system parameters are fixed and the wave vector k
is the only variable, Ref. [30] found that a non-Hermitian flat
band can have two EPs at two different values of k.
Reference [31] identified a scenario that every possible state
in the flat band corresponds to an EP of order 2. Here, we first
point out that, in fact, a higher-order EP can be found for every
wave vector in the Brillouin zone, without increasing the size of
the unit cell (i.e., three lattice sites). In addition, we unveil a
polynomial power increase in such an “EP3 flat band,” which
can display either quadratic or quartic behaviors.

To exemplify this EP3 flat band, we turn to the lattice
described by Eq. (4) and require θ � �p� 0.5�π �p ∈ Z �
and γ � −G sin θ � 	G. Below we take p to be an odd
integer, and the case with an even p is the same with a few sign

changes. We now have γ � G, J� � iJ , and the Bloch
Hamiltonian becomes

H �k� �

2
664

−iG G J�1� e−ika�
G iG iJ�1� e−ika�

J�1� eika� iJ�1� eika� 0

3
775: (7)

We immediately find that the first two rows (columns) ofH �k�
in this case differ by a factor of i; hence, the Bloch Hamiltonian
has a zero eigenvalue, independent of the value of k; this
is exactly the flat band ωFB � −G cos θ mentioned in the
previous section. More importantly, the characteristic polyno-
mial of H �k� is simply ω3 � 0, again independent of k.
Therefore, every state in this flat band corresponds to an EP
of order 3 [25,33], including the collapsed and identical
Wannier function for all values of k, which is given by
�ψ �A�

j ;ψ �B�
j ;ψ �C�

j � � �1; i; 0�.
An initial excitation of this Wannier function or its super-

position in more than one unit cell leads to a conserved energy
in this EP3 flat band because the corresponding eigenvalue is
real [see Fig. 8(a)]. For a more general excitation, we resort to
the notion of generalized eigenvectors [55] to investigate the
dynamics in the system. Let Ψ0 and ω0 be a triply coalesced
eigenstate and eigenvalue of the system Hamiltonian H .
We then define the first generalized eigenvector Ψ1 by

�H − ω01�Ψ1 � Ψ0; (8)

where 1 is the identity matrix. A particular consequence of
Eq. (8) is

e−iHtΨ1 � e−iω0t�Ψ1 − itΨ0�; (9)

i.e., an initial excitation of Ψ1 will display a quadratic power
increase in the asymptotic limit t → ∞ when ω0 is real [see
Fig. 8(b)], and the asymptotic wave function is given by the
eigenvector Ψ0 itself. The latter observation holds even when
ω0 is complex. In the EP3 flat band discussed above, we found
that Ψ1 can be chosen simply as Ψ1 � �ψ �A�

j ;ψ �B�
j ;ψ �C�

j � �
�0; 0; 1� in a single unit cell, and the corresponding eigenstate
is an equal superposition of the Wannier functions of two
neighboring unit cells, i.e., Ψ0 � �ψ �A�

j ;ψ �B�
j ;ψ �A�

j�1;ψ
�B�
j�1� �

�J; iJ; J; iJ �; the only exception takes place when the jth unit
cell is the last one, where Ψ0 � �ψ �A�

N ;ψ �B�
N � � �J; iJ �. To sim-

plify the notations, we have dropped from these expressions the
lattice sites with a zero amplitude.

Similarly, we define the second generalized eigenvector Ψ2

by

�H − ω01�Ψ2 � Ψ1; (10)

which indicates

e−iHtΨ2 � e−iω0t

�
Ψ2 − itΨ1 −

t2

2
Ψ0

�
: (11)

Therefore, we can expect a quartic (t4) power increase as
t → ∞, if ω0 is real and Ψ2 is excited initially [see Fig. 8(c)].
It is important to note that, for an extended system, Ψ1 in
Eq. (10) does not need to be identical to that defined in
Eq. (8); it can be a superposition of the latter in more than
one unit cell, with the additional freedom of superposing
the eigenstates in different unit cells as well. For example,
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Fig. 7. (a, b) Two compact Wannier functions (partially transparent
dots) for the cross-stitched lattice shown. Couplings are represented by
dashed lines (J), dash–dotted lines (J�), and solid lines (G). Gain (iγ)
and loss (−iγ) are introduced to B and A sites, respectively. Here,
G � jJ j, Arg�J � � 0.3 ≡ θ∕2, and γ � −G∕ sin θ in (a) and
−G sin θ in (b). (c,d) Band structure of this cross-stitched lattice
for the values of γ in (a) and (b). The flat bands result from the com-
pact Wannier functions in (a) and (b).

A14 Vol. 6, No. 4 / April 2018 / Photonics Research Research Article



we find that the tightestΨ2 is given by ψ
�A�
j � 1 in the EP3 flat

band discussed above, and the corresponding Ψ1 is given by
�ψ �C�

j ;ψ �A�
j�1;ψ

�B�
j�1;ψ

�C�
j�1� � �J; −iG; G; J �, which also leads to

a different Ψ0 from that shown in Fig. 8(b), now given by
�ψ �A�

j−1 ;ψ
�B�
j−1 ;ψ

�A�
j ;ψ �B�

j ;ψ �A�
j�1;ψ

�B�
j�1� � �J2; iJ2;2 J2;2iJ2; J2; iJ2�;

this is the asymptotic wave function shown in Fig. 8(c), which
agrees with the analytical result given by Eq. (11). Note that we
can also choose the second generalized eigenvector as
Ψ 0

2 � ψ �B�
j � −i, which leads to the same Ψ1;0 as the Ψ2 speci-

fied above; hence, the quadratic and quartic power terms are
cancelled for an initial excitation of the superposition
Ψ2 −Ψ 0

2 � �ψ �A�
j ;ψ �B�

j � � �1; i�, which is exactly the eigenstate
itself in a unit cell.

4. DISCUSSION AND CONCLUSION

In conclusion, we have discussed systematically three ap-
proaches to achieve a non-Hermitian flat band. Their relation
is summarized in Fig. 9. Approaches 2 and 3 overlap when the
Hermitian Wannier function remains an eigenstate of the sys-
tem, either with just the introduction gain and loss modulation
(as already mentioned at the beginning of Section 2.B) or with
complexified coupling(s) too (as the last case in Section 2.C
shows). Approaches 1 and 2, however, do not overlap because,
in the Hermitian limit, one of them has a flat band

(Approach 2) but not the other (Approach 1). Similarly,
Approaches 1 and 3 do not overlap because a non-Hermitian
flat band constructed by Approach 1 is due to the spontaneously
restored NHPH symmetry and has a k-dependent imaginary
part of the flat band. In contrast, the flat band constructed in
Approach 3 has a k-independent imaginary part instead.

Even though Approaches 1 and 2 do not overlap, they still
have a delicate relationship from the perspective of NHPH
symmetry. When the couplings in Approach 2 are allowed
to be complexified, the system itself does not need to have
NHPH symmetry, as the last case in Section 2.C shows.
Otherwise, NHPH symmetry of the system is required in this
approach, as in Approach 1: for all the cases with a persisting
Hermitian flat band considered in Section 2.B [i.e., Figs. 1(b),
5(b), and 6], there exist two sublattices where all couplings are
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Fig. 9. Relation between the three general approaches to construct a
non-Hermitian flat band.
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real and take place only between sites on different sublattices;
hence, the system has NHPH symmetry [36]. For the case with
a nonpersisting Hermitian flat band, as considered in Fig. 5(d),
two neighboring B sites couple; hence, the system does not
have NHPH symmetry. Another case is the one shown in
Fig. 7(d): by taking J to be real (and hence θ � 0), a
Hermitian flat band lays at ωFB � −G. Now, even though each
unit cell of this lattice has three lattice sites, similar to the Lieb
lattice in Fig. 1(b), it does not have the two sublattices required
by NHPH symmetry. As a result, this flat band does not persist
with the introduction of an arbitrary gain and loss modulation
(not shown), if we keep all couplings real-valued.

Although only the last approach, i.e., constructing a
Wannier function that is an eigenstate of the entire system,
leads to a flat imaginary part of the dispersion relation as well,
the existence of localized defect states with a slight perturbation
does not rely on this additional property [32]. Because all im-
plementations of flat bands in a photonic structure has defects,
whether using laser-written waveguides [3–5] or microcavities
fabricated by various etching methods [6], the dispersive imagi-
nary part does not affect the non-Hermitian flat bands from
revealing this key manifestation of their Hermitian counterpart.
If for some applications a vanished imaginary part of the entire
flat band is preferred, Approach 3 should be adopted. For ex-
ample, the two flat bands shown in Fig. 7 are both real valued,
and the one given by Eq. (6) can be made real by having
γB � 0. For the EP3 flat band we have exemplified using
Approach 3, a quartic power increase is expected unless the
initial excitation is exactly an eigenstate or the first generalized
eigenvector. This behavior is different from the previous found
quadratic power increase due to an EP of order 2 [56].

For simplicity, we have discussed mainly quasi-1D lattices,
but the results presented here can be easily generalized to 2D
lattices, as we have exemplified in Section 2.A and 2.B. In fact,
the additional dimension does not need to be a spatial dimen-
sion; it can come from the internal energy structure of the
lattice sites, when we consider, for example, cold atoms in
an optical lattice [57]. Experimentally preparing a non-
Hermitian system at an EP remains to be difficult, but recent
successes of demonstrating EP-based sensing schemes [58,59]
have proven that such a challenge can be overcome with finely
tuned optical systems.
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